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Motivation
• Fragmentation reactions (usually E/A > 50 MeV) produce neutron-rich nuclei but at relatively 

low angular momentum.
• In this work we use a target fragmentation reaction (E/A = 30 MeV) to study the feasibility of 

producing neutron-rich nuclei at higher spins.

Experimental set-up
Target fragmentation experiment with Gammasphere

Gammasphere array

12C beam
3 pnA, 30 MeV/A

51V target

40 mg/cm2

The experiment was performed with the Gammasphere array 
and the beam delivered by the 88-inch cyclotron at LBNL.
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•Fragmentation at low energies
[G. A. Souliotis et al., “Enhanced 
production of neutron-rich rare 
isotopes in peripheral collisions at
Fermi energies”, PRL, 11 July 
2003, 022701-1]

•Fragmentation of 86Kr at 25
MeV/A on targets of 
neutron-rich 124Sn and 64Ni
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Experimental product distribution

New gamma-ray transitions found in:
38Ar, 41,42,43,44,45,46Ca, 45,52Ti, 50,52Cr,
43K, 44,48Sc, 47V, 51,52Mn



542Ca 44Ca 46Ca

Gamma-ray 
spectroscopy 

analysis

The spectrum of <3 MeV
gamma rays emitted 
within ~100 ns of the 
beam burst was analyzed 
using double and triple 
gamma-ray coincidences 
to identify the product 
nucleus from which they 
were emitted. The 
intensity of these 
coincidences provides the 
basis for determining the 
yields of different product 
nuclei.
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Experimental product yields
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Product yield predictions from the LISE code
(based on abrasion-ablation model of pure fragmentation)
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Predicted spin of 51V target fragments
(model based on pure fragmentation)

•In [Pfützner et al., PRC 65, 064604, 2002] an analytical model to predict 
spin of fragments is presented. The probability of populating a given spin J 
(PJ) is given as a function of A of the fragment, projectile and target (Af, Ap, 
At, respectively).
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•This figure represents the 
maximum spin of each 
fragment depending on its 
mass number Af

•Smaller fragments achieve 
higher spins
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Experimental and model spin distributions

• The experimental data on spin populations do not match the pure 
fragmentation model [Pfützner]

• Discrepancies are larger for the higher mass fragments.
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Conclusions
When experimental results are compared to predictions from pure fragmentation:

– Product distribution:
• LISE code predicts same N/Z of isotopic yield peaks as experiment

– Yields:
• LISE code predicts slower rate of increase of yields with increasing A of 

fragment. 

– Spin:
• As with yields, discrepancies are larger for higher mass fragments

Neither spins nor yields can be modeled by pure 
fragmentation other reaction mechanisms taking place 
at 30 MeV/A

Future work
• Complete gamma-ray spectroscopy analysis
• Experimental product yields are being compared with more 

comprehensive reaction models: AMD model by A. Ono [Ono et al., PRL 
68(19), 2898 (1992)]

• Complete analysis of product spin population
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